
The Puma Operating SystemFor Massively Parallel Computers �Lance Shuler,Chu Jong, Rolf Riesen, David van Dresser- Sandia National LaboratoriesArthur B. Maccabe, Lee Ann Fisk- The University of New MexicoT. Mack Stallcup- Intel SSDAbstractThis paper describes the Puma operating system,the successor to the Sandia and University of NewMexico operating system (SUNMOS). Puma is a mul-tiprocessor operating system that is made up of twobasic structures, the quintessential kernel (Q-kernel)and the process control thread (PCT). Together, theyprovide the user with a exible, lightweight, high per-formance, message passing environment for massivelyparallel computers. In this paper, we discuss the struc-ture of Puma and its unique message passing designbased on portals.Keywords: SUNMOS, Puma, operating systems,message passing1 IntroductionThis paper describes the Puma message passingoperating system that is under development at San-dia National Labs and the University of New Mexico.Puma is the successor to the Sandia and University ofNew Mexico operating system (SUNMOS). Puma in-herited many of SUNMOS's goals including small size,high performance, and scalability. Puma is a mul-tiprocessor operating system that has expanded mes-sage passing capability through a new message passingmechanism known as portals. A portal is essentially�This work was performed at Sandia National Laboratories,operated for the U.S. Department of Energy under contract No.DE-AC04-76DP00789

an opening in the user's address space, from which orto which another node may read or write data.This paper describes the structure of Puma andthe portal message passing concept. Section 2 cov-ers the structure of Puma. Section 3 describes thetrust mechanism of Puma. Section 4 covers the mes-sage passing mechanism using portals and Section 5provides a summary.2 Puma StructureThe Puma operating system can be broken downinto two operating system entities known as thequintessential kernel (Q-kernel) and the process con-trol thread (PCT). Together, they provide the userwith the support needed for a high performance, mul-tiprocessor, message passing environment.2.1 RationaleFigure 1 shows the structure of the Puma operatingsystem. The criteria that motivated this form of thePuma design are as follows:� The Q-kernel must occupy minimal space.(Small)� The Q-kernel must remain alive through softwarefaults. (Persistent)� The Q-kernel must not grow in size as the numberof nodes increases. (Scalable)



Shrinking the size of the kernel necessitates themoving of some kernel level tasks and structures outof kernel space and into user space. Speci�cally, moststructures relating to message passing were moved intothe user process' space. In addition, the functional-ity covering the management of system resources wasmoved out of the kernel and put under the responsibil-ity of the process control thread or PCT. The messagepassing side of Puma will be discussed later in moredetail. The two sections below will discuss the rela-tionship between the Q-kernel and the PCT.
QuintessentialKernelProcessControlThread(PCT) User ProcessesProcess 1Process 2Process 3Figure 1: Puma Structure2.2 Quintessential KernelFigure 1 shows the Q-kernel as the lowest level ofthe operating system. It sits on top of the hardwareand performs hardware services on behalf of the PCTand user processes.The Q-kernel supports the minimal set of tasks thatrequire execution in supervisor mode. Some of thesetasks include handling interrupts and handling hard-ware faults. In addition, the Q-kernel performs super-visor mode services requested by the PCT such as mes-sage dispatch and reception, context switching, virtualaddress manipulation, and running a process. The Q-kernel also handles message dispatch and reception onbehalf of user processes.The Q-kernel does not manage system resources,however. For instance, the Q-kernel does not per-form process loading, manage process virtual addressspaces, or do job scheduling. The Q-kernel's primaryfunction is to handle hardware interrupts and excep-tions, and to perform speci�c tasks on behalf of thePCT and user processes that must be executed in su-pervisor mode.By removing the management tasks from the kernellevel, we succeed in building a kernel that is small

and that has a minimal set of clearly de�ned tasks toperform. Such a kernel is simple to maintain, fast,and reliable in the sense that because of its small size,it has a much smaller window in which a failure canoccur.2.3 Process Control ThreadFigure 1 shows the PCT in user space sitting on topof the kernel, yet seperate from other user processes.The PCT is essentially a user level thread with specialprivileges. It has read/write access to all memory inuser space and is in charge of managing all operatingsystem resources. This involves process loading, jobscheduling, and memory management. In addition,the PCT may initiate contact with an available serveron behalf of a user process.The PCT and the Q-kernel must work together toprovide a complete operating system. The PCT willdecide what physical memory and virtual addresses anew process is to have and at the behest of the PCT,the Q-kernel will setup the virtual addressing struc-tures for the new process that are required by thehardware. The PCT will decide which process is torun next and at the behest of the PCT, the Q-kernelwill ush caches, setup the hardware registers, andrun this process. Notice the clear seperation betweenresource management and kernel task execution. ThePCT acts as manager and the Q-kernel acts as hard-ware request server.2.4 FeaturesSome attractive features result by splitting oper-ating system functionality between the Q-kernel andthe PCT. These include fault tolerance and multipleresource management policies.The small size and well de�ned tasks of the Q-kernelmake reliable software fault tolerance realizable. Evenif the PCT faults for some reason, the Q-kernel canremain alive ensuring that the node remains alive. Forlarge Paragons, such as the one at Sandia, this meanslarge savings in downtime, since many software faultsthat take down a node require a reboot of the wholemachine as well as the reloading of currently runningapplications. In the scenario we present here, the PCTsimply needs to be reloaded, and the local runningapplications need to be restarted.Another attractive feature is the exibility that canbe achieved by a modular PCT. There can be only onePCT per node. However, one may have several PCTsto chose from. One could have a PCT that is sin-gle tasking, a PCT that is multitasking, a PCT that



does priority scheduling, a PCT that does round robinscheduling, a development PCT that supports debug-ging and pro�ling, and a performance PCT that sup-ports no debugging or pro�ling. All of these would siton top of the same Q-kernel, but would have di�erentmanagement policies.In addition, a site could have two machine parti-tions, one that runs a performance PCT that is singletasking with no debugging and one that runs a de-velopment PCT that is multitasking and supports de-bugging and pro�ling. Repartitioning requires simplyreloading PCT's in a di�erent con�guration, ratherthan rebooting the whole machine.3 TrustPuma is based on a system of multiple levels oftrust. The Q-kernel trusts other Q-kernels. A corol-lary to this is that the Q-kernel trusts the network,since no message will enter the network except by wayof another Q-kernel. Q-kernels do not trust PCTs oruser processes.The PCT trusts the Q-kernel and other PCTs.PCTs do not trust user processes. User processes trustboth the Q-kernel and the PCT.High performance is achieved through this trustmodel. Since the Q-kernel trusts the network, mes-sages do not have to go through a source veri�cationprocess. They can be immediately deposited in userspace. This signi�cantly cuts time out of the latencypath.Address veri�cation is necessary in the Q-kernel,but only at a few well de�ned set of kernel entry points.4 Message PassingPuma message passing is based on a new conceptknown as a portal. A portal is essentially an openingin an application's address space to which data can bedirectly read from or directly written to using messagepassing. Portals are designed to avoid memory copiesthat are required when there is send side or receiveside message bu�ering. In addition, portals provide away for the Q-kernel to reply to read requests with-out having to perform a context switch and move touser mode. Memory copies and upcalls to user modeare costly operations. Portals are designed to avoidboth. The sections below describe the portal messagepassing concept and present the basic portal messagepassing structures.

4.1 PortalsPortals map messages into user space. Figure 2 il-lustrates the mapping. A portal is referenced throughan index into a portal table, where each table entryrefers to either a match list or a memory descriptor. Amemory descriptor describes the layout of the mem-ory associated with the portal. Matching lists pro-vide portals with a matching semantic that can beused to bind speci�c messages to speci�c memory re-gions. Each entry of the matching list has a memorydescriptor associated with it. A portal may refer to amemory descriptor directly or to multiple memory de-scriptors indirectly through a matching list. It shouldbe noted that due to issues of scalability, the portal ta-ble, matching lists, and memory descriptors all residein user space, rather than in kernel space.PortalTable MatchingLists--
MemoryDescriptors--------------Figure 2: Portal Structure4.1.1 Memory DescriptorsMemory descriptors describe the layout of the memoryassociated either with the portal descriptor or with amatch list entry. For the discussion in this section, theway the memory descriptor is attached to the portalis irrelevant. Puma supports four types of memorylayout.



� Dynamic layout� Single block layout� Combined block layout� Independent block layoutThere are also several options associated with mem-ory descriptors that are considered orthogonal to de-scribing memory layout. One option that has alreadybeen mentioned is having a matching semantic by us-ing the matching lists. In addition, a memory descrip-tor may be designated as read only or as write only.An additional option is being able to specify eithersender or receiver managed o�sets for read and writeoperations. When the sender manages the o�set, mes-sages can specify an o�set into the portal where datashould be read from or should be written to. Thisis particularly useful when implementing multinodeservers that work together to service an application'sI/O requests. With receiver managed o�sets, the re-ceiver increments the o�set each time data is readfrom or written to a memory descriptor. Since datais incrementally read or written from the beginningof the memory block to the end, it is important thatread/write requests arrive in the proper order.There are some memory descriptors that describethe layout of memory in terms of an array of bu�ers.There is an option for viewing these bu�ers as a linearlist or as a circular list of bu�ers.Another option allows the user to choose whetheror not to acknowledge (ack) write operations. The ackincludes information describing which write operationwas applied to the memory descriptor on the receivingend. The possibilities for write operations are:� Save header� Save body� Save header and bodyEach memory descriptor may allow only a subset ofthese orthogonal options. However, matching seman-tics is the one option common to all memory descrip-tors. The semantics of the di�erent memory descrip-tors and their associated options are described below.Dynamic Figure 3 illustrates the organization of adynamic memory descriptor. The memory descriptorpoints to a block of memory that is laid out in the formof a heap. Within the heap, the Q-kernel maintainsa linked list of free memory blocks and a linked listof arrived messages. When the Q-kernel receives a

message destined for this type of memory descriptor,the it mallocs memory out of this heap, deposits themessage, and adds the message onto the end of thearrived messages list. A message may be unlinked andfreed by the application at the user level.Regarding orthogonal options, the dynamic mem-ory descriptor may not be read from, and hence iswrite only by default. The acknowledgement optionon write operations is allowed. Sender and receivermanaged o�sets are not supported and neither is thesave-body write operation. The save-header and save-header-and-body operations are supported.memorydescriptor? Arrived Messages ListHEAP- -Figure 3: Dynamic Memory DescriptorSingle Block Figure 4 illustrates the organizationof a single block memory descriptor. The memory de-scriptor points to a single contiguous block of memory.This memory descriptor was designed to permit multi-ple servers to �ll in the single block of memory. Sincemultiple messages may contribute a piece of data, itdoesn't make since to save each header, particularlysince the receiver doesn't know and doesn't really carehowmany servers are being used. As a result, no head-ers are saved in a single block memory descriptor as amatter of policy.Regarding orthogonal options, the single blockmemory descriptor may be setup as read only or aswrite only. This single block structure is designed totake advantage of having multiple servers that man-age I/O and other services. Hence, sender or receivermanaged o�sets are supported with this memory de-scriptor. The save-header and save-header-and-bodywrite operations are not supported, but the save-bodyoperation is supported. In addition, acknowledgingwrite operations is supported.Independent Block Figure 5 illustrates the mem-ory structure in an independent block memory de-scriptor. The memory descriptor points to an array



memorydescriptor -Figure 4: Single Block Memory Desciptorof bu�er descriptors, each of which points to a con-tiguous block of memory. As the title implies, eachblock is treated as an independent entity. One andonly block of memory is permitted per message. Inaddition, the list of bu�ers is traversed in order. Ifthe next available bu�er is not large enough to holdthe arrived message, then the Q-kernel stops immedi-ately and ags an error bit, even though there may bemessages further down the array that are large enoughto consume the message.Supported orthogonal options include setting upthe memory descriptor as read only or as write only.In addition, the array of bu�ers in the memory de-scriptor may be designated as linear or circular. O�-sets are not supported in independent block memorydescriptors. Write operations that are supported in-clude save-header and save-header-and-body. Finally,acknowledging write operations is supported.memorydescriptor? Bu�er Descriptor Table? ? ? ?Figure 5: Independent Block Memory DescriptorCombined Block Figure 6 illustrates the memorystructure in a combined block memory descriptor. Thememory descriptor points to an array of bu�er de-scriptors, each of which points to a contiguous blockof memory. The title implies that the memory blocksare combined in some fashion. Speci�cally, this mem-ory descriptor is intended to perform exactly the sameas the single block memory descriptor, except thatinstead of containing memory laid out as a contigu-

ous block, the combined block memory descriptor hasmemory laid out as a logically contiguous block. Inreality, the logically contiguous block is made up ofan array of memory segments that may not be con-tiguous.This memory descriptor supports the scatter andgather message passing operations. A single messagedestined for this memory descriptor that has a lengthequal to the sum of all the lengths of the blocks will besplit up and placed into the blocks according to theirorder in the array (scatter operation). In the case ofthe scatter, the memory descriptor would be setup asa write only. On the otherhand, the memory descrip-tor could have the same block structure for a gatheroperation, except be read only. A read request on thismemory descriptor for a length equal to the sum of allthe blocks in the combined block memory descriptorwould result in a single message reply consisting of allthe memory blocks assembled according to their orderin the bu�er descriptor array.Like the single block memory descriptor, multipleservers may read or write to this memory as thoughit were one contiguous block. No headers are savedfor the same reason that they are not saved in singleblock memory descriptors. In addition, this memorydescriptor supports the same orthogonal options asthe single block memory descriptor.memorydescriptor? Bu�er Descriptor Table? ? ? ?Figure 6: Combined Block Memory Descriptor4.1.2 Matching ListThe matching list makes it possible to have matchingsemantics for portals at the kernel level. Matchingsemantics provide a way to prepost receives, so that auser has better control of directing which message isto be deposited where.When a message arrives at a portal that supportsmatching, the Q-kernel searches down the match listuntil an entry is found where the following �elds matchin both the match list entry and in the message header:



� source group id� source group rank� 64 match bitsDepending on the protocol, all of these �elds maybe wildcarded in the match list entry. On a success-ful match, the Q-kernel deposits the message into thememory descriptor associated with the matching listentry.At a particular entry, the Q-kernel could experienceone of the following failures:� Failure on no match� Failure on no bu�er� Failure on no �tFailure on no match means that there was a fail-ure to match on one of the above listed match �elds.Failure on no bu�er means that there is no availablebu�er in the memory descriptor for the message. Fail-ure on no �t, means that there may be memory in anavailable bu�er of the memory descriptor, but it is notbig enough to hold the message.Handling these failures requires three-way overowbranching out of the match list entry. On each ofthe failures, the user may specify where to go next.Typically, failure on no match is handled by going onto the next match list entry. Handling failure on nobu�er or no �t depends on the protocol. The proto-col could designate that the message be dropped bypointing to the end of the list. On the otherhand, theprotocol could point to an overow memory descriptorthat simply saves the message header for future use.The matching list provides a great deal of exibilityin handling overow conditions and is not restrictedto the cases mentioned here.4.2 Portal IssuesWe mentioned earlier that all the message passingstructures are in user space. This makes it easy forusers to manage the portal structures without havingto pay the cost of trapping into the Q-kernel. In ad-dition, this allows the Q-kernel to remain small eventhough the number of processes per node may be large.There are some issues associated with having mes-sage passing structures in user space, however, thatmust be addressed. At any time, an application mayintentionally or accidentally corrupt the portal struc-tures that the Q-kernel may be accessing. Thus, theQ-kernel must have the proper address veri�cation

mechanisms available to protect itself against the ap-plication. It is a general Puma policy to allow an ap-plication to harm itself (including writing over its ownstack), but it cannot be allowed to hurt the Q-kernel,PCT, or other running applications.Another problem with having the user manipulateportal structures rather than the Q-kernel is the prob-lem of race conditions. For instance, suppose a portalis setup with a matching list that points to posted re-ceives and an overow bu�er. The user level receivewill �rst check to see if there is a matching messagein the overow memory discriptor. If there is no suchmessage, then the user level receive will post the mes-sage into the matching list. However, during the timethat the user level receive is setting up the postedreceive, the target message may arrive. The Q-kernelmay search through the matching list that still doesn'thave the posted receive yet, and place the messagein the overow memory descriptor. Only after themessage is tucked away in the overow, does the postreceive operation complete. The message essentiallysnuck in and the user application never saw it. Thereare techniques for handling race conditions that willsolve such a scenario. Library writers and users whowork with portals will need to employ these techniquesin order to ensure proper protocol implementations.5 SummaryIn this paper, we described the organization of thePuma operating system. We discussed the structureand cooperative relationship of the Q-kernel and thePCT. We demonstrated how this split operating sys-tem structure naturally provides feature bene�ts inthe areas of fault tolerance and exible resource man-agement policies.We introduced the fundamental Puma messagepassing concept known as a portal. We presentedthe organization of a portal and discussed the vari-ous ways of describing memory using portal memorydescriptors. In addition, we described the semantics ofmatching and illustrated how the matching list couldbe used to handle posted receives and overow condi-tions.We called attention to the advantages and disad-vantages of having message passing structures in userspace rather than in kernel space. In particular, li-brary writers must be careful to employ basic tech-niques with portals that will eliminate race conditions.Race conditions may occur anytime a user applicationand the Q-kernel access the same structures within thesame time frame.



Finally, we have presented a comprehensive mul-tiprocessor operating system in Puma that meetsthe fundamental demands of today's massively paral-lel community: high performance, scalability, persis-tence, and light-weight message passing functionality.This paper and other information is available at thefollowing web site:http://www.cs.sandia.gov/� rolf/puma/puma.htmlReferences[1] Accetta, M.J., et.al. Mach: A New Kernel Foundationfor UNIX Development. Proceedings of the Summer 19865USENIX Conference, pp. 93-113, July 1986.[2] Burns, C.M., Kuhn, R.H., and Werme, E.J., Low CopyMessage Passing on the Alliant CAMPUS/800. Proceed-ings of Supercomputing'92, pp. 760-769, November 1992.[3] Cheriton, D.R., The V Kernel: A Software Base for Dis-tributed Systems. IEEE Software, 1(2):19-42, April 1984.[4] Cheriton, D.R., The V Distributed System. Communica-tions of the ACM, March 1988.[5] Maccabe, Arthur B., and Wheat, Stephen R., Messagepassing in PUMA. Sandia National Laboratories TechnicalReport SAND93-0935, 1993.[6] Renesse, R. van, and Tanenbaum, A.S., Short Overview ofAmoeba. Proceedings of the USENIX Workshop on Micro-kernels and Other Kernel Architectures, pp. 1-10, April1992.[7] Rozier, M., et.al., The Chorus Distributed Operating Sys-tem. Computing Systems, 1(4), 1988.[8] Wheat, Stephen R., Maccabe, Arthur B., Riesen, Rolf, vanDresser, David W., and Stallcup, T. Mack. PUMA: An op-erating system for massively parallel systems. Proceedingsof the Twenty-Seventh Annual Hawaii International Con-ference on System Sciences, pages 56-65. IEEE ComputerSociety Press, 1994.[9] Zajcew, R., et.al., An OSF/1 UNIX for Massively ParallelMulticomputers. Proceedings of the Winter 1993 USENIXConference, pp. 449-468, January 1993.


